What theoretical improvements are needed to model photonuclear reactions?

WANDA 2022

March 2, 2022 Erich Ormand

Much of nuclear data is devoted to particles, i.e., neutrons – But photons matter too

- Reactions induced by the interaction of photons with nuclei are important for applications and fundamental science
 - Radiation shielding and radiation transport
 - Safeguards and inspection technologies
 - Nuclear waste transmutation
 - Fission and fusion reactors
 - Activation analyses
 - Dosing for radiotherapy
 - Stockpile stewardship
 - Nucleosynthesis in the cosmos
- Evaluated data in needed for photon-induced reactions on wide range of nuclei (nearly, the entire chart of the nuclides) with energies ranging from 0-200 MeV

Photons are different that particles

- Particles interact strongly
 - Reaction cross sections are computed using the optical potential
 - At high energies, particles can bring in high angular momentum
- Photons interact electromagnetically
 - These reactions are weaker than strong interactions
 - Photo-absorption is dominated by the E1 component
 - Angular momentum: $J_{CN} = J_T \pm 1$
 - Parity switches: $\Pi_{CN} = -\Pi_T$
 - Structure can affect absorption for low-energy photons (nuclear fluorescence), especially for light nuclei

Nuclear data evaluations are driven by experimental data

- Several different experimental approaches
 - Mono-energetic beams
 - Bremsstrahlung
 - Photo-absorption cross section must be unfolded
- Complete channels can be difficult to separate
 - Neutron channels dominate
 - Charged particles are often lumped together in the neutron channels
 - · Sometimes explicit neutron channels are not identified
 - Sometimes the neutron multiplicities are misidentified
- Experimental data can be incomplete or inconsistent
 - Modeling is needed for a complete evaluation
 - Resolve experimental discrepancies
 - Disentangle various channels
 - Fill in gaps from experiment
 - Modeling is needed for exotic nuclei

Modeling of photonuclear reactions

- Hauser-Feshbach formalism
 - Compound nucleus decay
 - Pre-equilibrium emission
- Codes
 - EMPIRE
 - TALYS
 - CCONE
 - MEND-G
 - GLUNF
 - CoH₃
 - YAHFC

Modeling of photonuclear reactions: Photo-absorption cross section

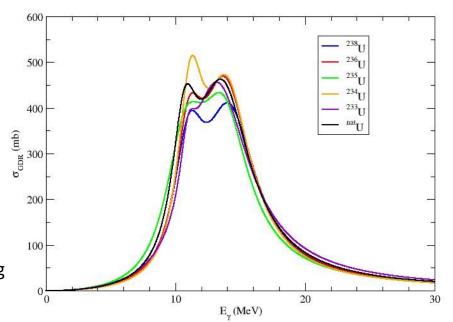
 Absorption is governed by the giant-dipole resonance (GDR) + quasi-deuteron photo-absorption (QD) (high-energy photons)

$$\sigma_{abs} = \sigma_{GDR} + \sigma_{QD}$$

- GDR component:
 - Collective resonance with energy: $E_0 \sim 80 A^{-1/3}$
 - Strength function is generally inferred from photo-absorption data $\sigma(\gamma, n)$
 - Theory can give guidance for resonance energies, RPA, etc
 - Resonance widths Γ_i
 - ~ 4-6 MeV
 - Very difficult to compute theoretically

Modeling of photonuclear reactions: Giant Dipole Resonance

 The GDR is a collective mode generally described with Lorentzian functions


$$\sigma_{GDR}(E_{\gamma}) = \sum_{i}^{N_R} \sigma_i \frac{E_{\gamma}^2 \Gamma_i^2}{\left(E_i^2 - E_{\gamma}^2\right)^2 + E_{\gamma}^2 \Gamma_i^2}$$

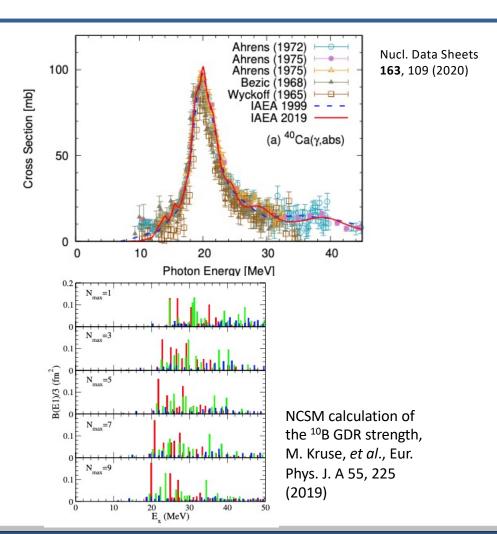
- For spherical nuclei, $N_R=1$
- For deformed nuclei N_R =2
- $-N_R > 1$ is due to deformation
 - Dipole is composed of three collective modes along each of the three principal axes

$$E_k = E_0 R / R_k$$

$$= E_0 e^{-\sqrt{\frac{5}{4\pi}}\beta\cos\left(\gamma + \frac{2\pi k}{3}\right)}$$

- Angular momentum can induce deformation and split the dipole
- Resonance parameters are nucleus dependent

The GDR depends on the nucleus – can't just plug and play

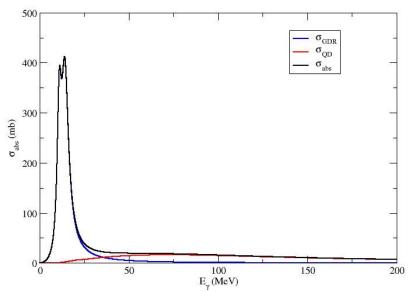

Modeling of photonuclear reactions: Advanced treatments of the GDR

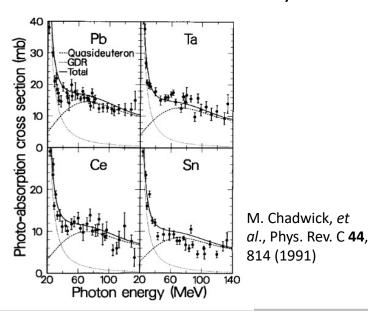
Beyond simple Lorentzian

- $-\Gamma_{\gamma}$ for neutron capture tells us something about the low-energy behavior
- Simple Lorentzian is usually inadequate at low energy
 - Modifications to the Lorentzian increase EM strength function for $E_{\gamma} < S_{\rm n}$
 - Generalized Lorentzian [Phys. Rev. C 47, 312 (1993)]
 - Simple modified Lorentzian [At. Nucl. Data Tables 97, 567 (20111)]
- Effects:
 - (n,γ) cross section
 - Low-energy photonuclear reactions, $E_{\gamma} < S_n$
 - Determines the emitted γ -spectra
- Are these modifications E1 or M1?
 - Shell model calculations in the fp-shell indicate that it might be M1 and reasonably describe experimental observations
- Slight caveat: This is also tangled up with level density models and neutron transmission coefficients

Modeling of photonuclear reactions: More advanced treatments of the GDR

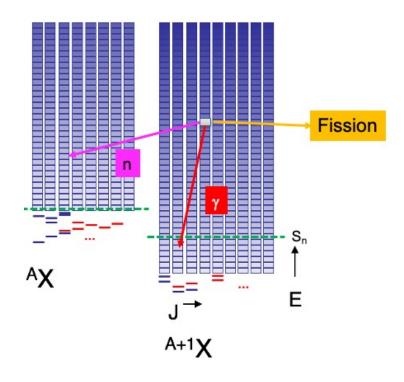
- Warning! For lighter nuclei, the GDR might not be well represented by the simple sum of a few Lorentzians
 - For ⁴⁰Ca data 10 resonances are needed to reconstruct the data
- Microscopic theories for nuclei with no data:
 - Resonance energies
 - RPA
 - Ab initio theories based on coupledclusters
 - Width is more difficult as it is beyond 1p-1h
 - Difficult to do properly as these 1p-1h excitations


Better microscopic theories could be helpful for light nuclei


Modeling of photonuclear reactions: Quasi-deuteron photo-absorption

Quasi-deuteron photo-absorption

$$\sigma_{QD}(E_{\gamma}) = L \frac{NZ}{A} \sigma_d P_b$$

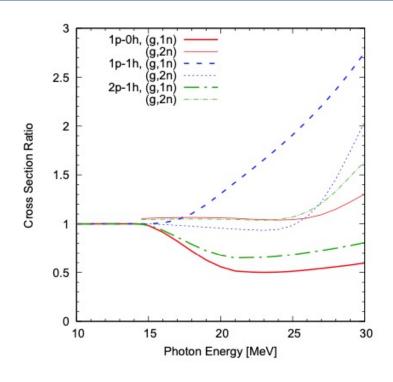
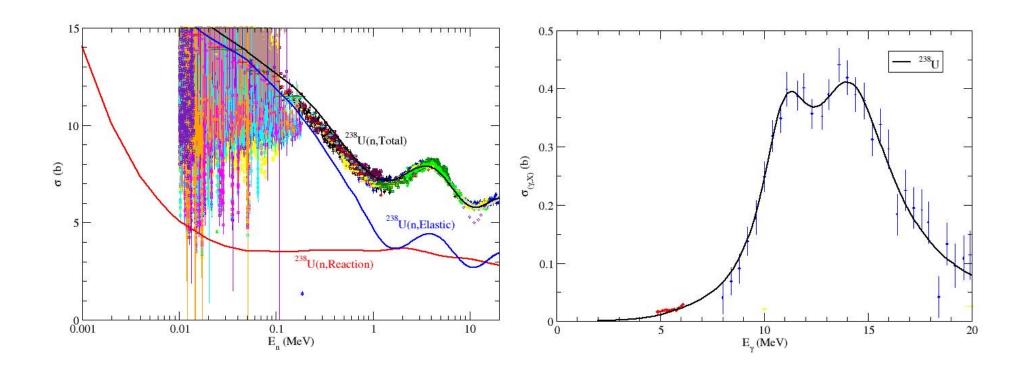

- L=6.5, adjusted to data and is rarely fined tuned for specific cases
- The deuteron photo-disintegration cross section, σ_d
- Pauli-blocking factor, P_{k} . (fit to an expensive full-scale calculation)

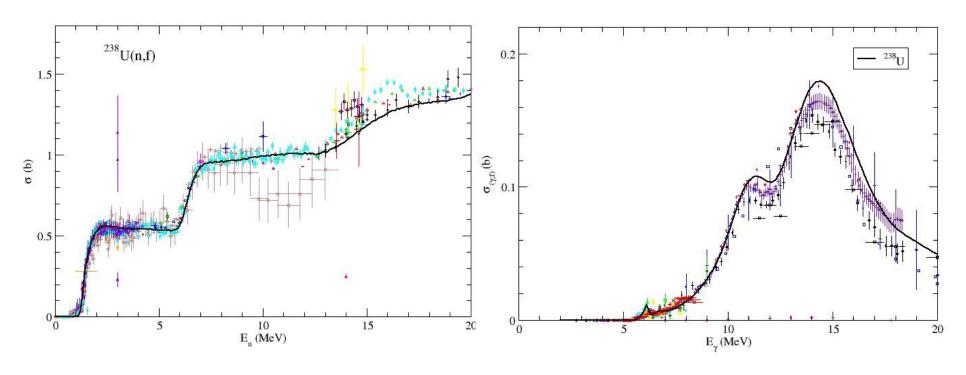
Modeling of photonuclear reactions: Nuclear Decay

- Two decay components
 - Compound
 - Pre-equilibrium
- Compound nucleus emission
 - Statistical decay with Hauser-Feshbach
 - Level densities
 - Transmission coefficients for particle emission
 - Optical potentials work well
 - EM strength functions
 - Same as for photo-absorption
 - Transition from continuum to discrete states
 - Fission model
 - Fission models are not predictive
 - Try to reproduce (n,f) and (γ ,f) simultaneously
 - Also, across isotopic chains

Modeling of photonuclear reactions: Nuclear Decay – Pre-equilibrium

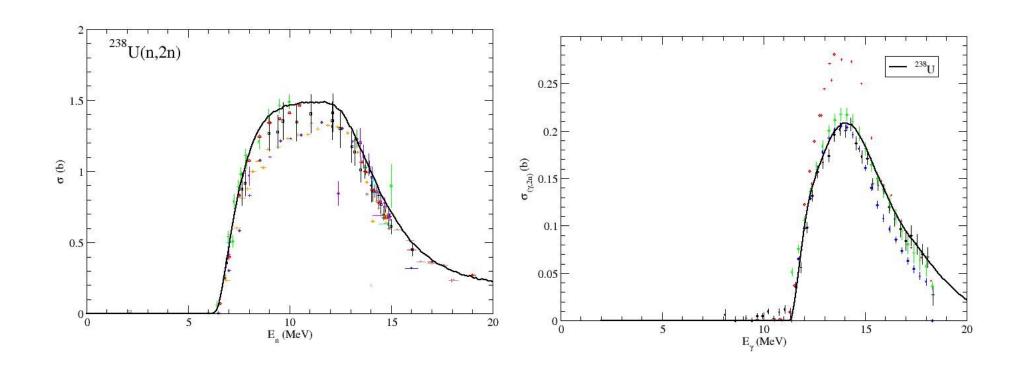
- Pre-equilibrium emission
 - Most modeling codes use the exciton model
 - Many codes use neutron preequilibrium as a surrogate, i.e., they take the initial configuration as 1p-0h or 2p-1h
 - CoH₃ starts at 1p-1h for GDR and 2p-2h for QD
 - Note though that overall, the preequilibrium component is small relative to the total
- There is a general weakness in HF modeling for pre-equilibrium and neutron inelastic scattering

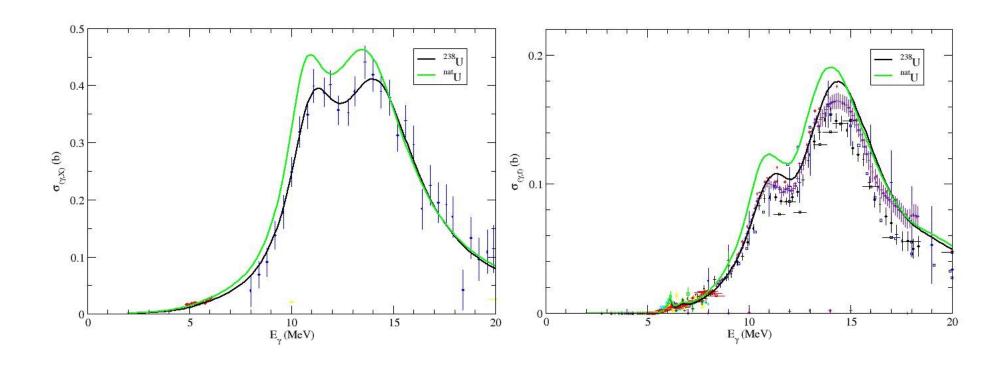

FIG. 7. (Color online) Calculated $^{181}{\rm Ta}(\gamma,n)$ and $(\gamma,2n)$ cross section when the initial exciton configuration is 1p-0h (solid), 1p-1h (dashed), and 2p-1h (dot-dashed). The calculated cross sections are shown by the ratios to the CoH₃ default calculation.

T. Kawano, et al., Nucl. Data Sheets 163, 109 (2020)

Modeling of nuclear reactions: Modeling 238 U: n and γ reactions



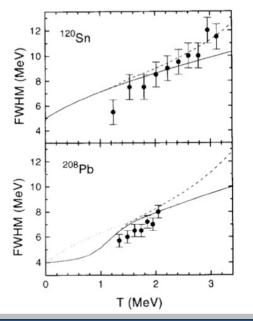
Modeling of nuclear reactions: Modeling 238 U: n and γ reactions

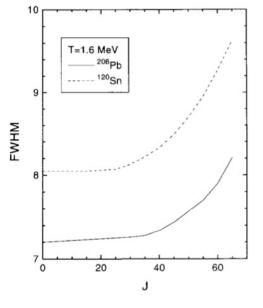


Fission parameters "fit" to (n,f) only, but derived from 238 U (n,f), 237 U (n,f), and 236 U (n,f) data

Modeling of nuclear reactions: Modeling 238 U: n and γ -2n reactions

Modeling of nuclear reactions: Role of the GDR absorption cross section




GDR strength function at high excitation energy and angular momentum

- GDR at high excitation energy and high angular momentum
 - Axel-Brink hypothesis states that the GDR is built on all states
 - Depends on the properties of the state, i.e., is it deformed?
 - Intrinsic width might have a weak dependence on excitation energy
 - State density is high and is composed of all deformations

• The GDR is an ensemble of the for all the states, including deformation weighted by

Free energy

Phys. Rev. Lett. **76**, 2025 (1993); Nucl. Phys. A **614**, 217 (1997)

Summary

- Better understanding of the photo-absorption cross section to provide better local accuracy – centroids, widths, and strength
 - Low-energy enhancements to strength function
 - Microscopic theories
 - Strength function for high excitation energy
- Compound decay relies on the same physics as neutron reactions
 - Level densities
 - Particle transmission coefficients
 - EM strength functions
 - Fission models
 - Transition from continuum gamma rays to discrete states
 - Possibility of isospin and K conservation
- Pre-equilibrium decay
 - Better understanding and consistency for initial configurations
 - But we should do better than the exciton model
 - Could be computationally expensive
 - Will also improve our understanding of neutron inelastic scattering